
ViperGPT: Visual Inference via Python Execution for Reasoning

Dídac Surís*, Sachit Menon*, Carl Vondrick
Columbia University

viper.cs.columbia.edu

Abstract

Answering visual queries is a complex task that requires
both visual processing and reasoning. End-to-end models,
the dominant approach for this task, do not explicitly differ-
entiate between the two, limiting interpretability and gener-
alization. Learning modular programs presents a promising
alternative, but has proven challenging due to the difficulty
of learning both the programs and modules simultaneously.
We introduce ViperGPT, a framework that leverages code-
generation models to compose vision-and-language models
into subroutines to produce a result for any query. ViperGPT
utilizes a provided API to access the available modules, and
composes them by generating Python code that is later ex-
ecuted. This simple approach requires no further training,
and achieves state-of-the-art results across various complex
visual tasks.

1. Introduction

How many muffins can each kid in Figure 1 (top) eat for
it to be fair? To answer this, we might 1) find the children
and the muffins in the image, 2) count how many there are
of each, and 3) reason that ‘fair’ implies an even split, hence
divide. People find it natural to compositionally combine
individual steps together to understand the visual world.
Yet, the dominant approach in the field of computer vision
remains end-to-end models, which do not inherently lever-
age this compositional reasoning.

Although the field has made large progress on individual
tasks such as object recognition and depth estimation, end-
to-end approaches to complex tasks must learn to implicitly
perform all tasks within the forward pass of a neural net-
work. Not only does this fail to make use of the advances
in fundamental vision tasks at different steps, it does not
make use of the fact that computers can perform mathemat-
ical operations (e.g., division) easily without machine learn-
ing. We cannot trust neural models to generalize system-
atically to different numbers of muffins or children. End-

*Equal contribution. Order determined via coin flip and may be listed
either way.

to-end models also produce fundamentally uninterpretable
decisions – there is no way to audit the result of each step
to diagnose failure. As models grow increasingly data and
compute-hungry, this approach grows increasingly unten-
able. We would like to perform new tasks without additional
training by recombining our existing models in new ways.

What limits us from creating such modular systems for
more complex tasks? In previous years, the pioneering
works of Neural Module Networks [2, 27, 19] attempted to
decompose tasks into simpler modules. By training end-to-
end with modules rearranged in different ways for different
problems, the hope was that each module would learn their
appropriate function and thereby become reusable. How-
ever, numerous issues made this approach difficult to extend
to the real world. In particular, program generation relied
on hand-tuned natural language parsers [2], or otherwise re-
quired reinforcement learning from scratch and were thus
difficult to optimize [19, 27]. In each case, program gener-
ation was highly domain-limited. Furthermore, learning the
perceptual models jointly with the program generator made
training even more difficult, often failing to produce the in-
tended modular structure [3, 48].

In this work, we present ViperGPT1, a framework that
overcomes these bottlenecks by leveraging code generat-
ing large language models (e.g. GPT-3 Codex [9]) to flexi-
bly compose vision models based on any textual query that
defines the task. It creates customized programs for each
query that take images or videos as argument and return the
result of the query for that image or video. We show that
providing Codex an API exposing various visual capabili-
ties (e.g. find, compute_depth), just as one might provide
an engineer, is sufficient for the creation of these programs.
The model’s prior training on code enables it to reason
about how to use these functions and implement the relevant
logic. Our results demonstrate that this simple approach de-
livers remarkable zero-shot performance (i.e. without ever
training on task specific images).

Our simple approach enjoys many benefits: it is 1) inter-
pretable, as all the steps are explicit as code function calls

1We name our method after a snake because it executes Python code.

http://viper.cs.columbia.edu

Query: What color do you get if you combine the colors of the viper and the flower?

Result:“purple”

► viper_color=‘blue’
► flower_color=‘red’
► color=‘purple’

► viper_patch=

► flower_patch=

Query: Tell me about the competition between the two skyscrapers in the image.

► skyscraper_1_name=‘chrysler building’
► skyscraper_2_name=‘empire state building’

skyscraper_patches =

def execute_command(image):
 image_patch = ImagePatch(image)
 viper_patches = image_patch.find("viper")
 flower_patches = image_patch.find("flower")
 viper_patch = viper_patches[0]
 flower_patch = flower_patches[0]
 viper_color = viper_patch.simple_query("What color is the viper?")
 flower_color = flower_patch.simple_query("What color is the flower?")
 color = llm_query(f"What color do you get if you combine the colors
 {viper_color} and {flower_color}?")
 return color

def execute_command(image):
 image_patch = ImagePatch(image)
 skyscraper_patches = image_patch.find("skyscraper")
 skyscraper_patch_1 = skyscraper_patches[0]
 skyscraper_patch_2 = skyscraper_patches[1]
 skyscraper_1_name = skyscraper_patch_1.simple_query("What is the name of this skyscraper?")
 skyscraper_2_name = skyscraper_patch_2.simple_query("What is the name of this skyscraper?")
 return llm_query(f"Tell me about the competition between {skyscraper_1_name} and {skyscraper_2_name}")

Query: How many muffins can each kid have for it to be fair? Execution

Result:4

► len(muffin_patches)=8
► len(kid_patches)=2

► 8//2 = 4

kid_patches =
image_patch.find(”kid”)

muffin_patches =
image_patch.find(”muffin”)

def execute_command(image):
 image_patch = ImagePatch(image)
 muffin_patches = image_patch.find("muffin")
 kid_patches = image_patch.find("kid")
 return str(len(muffin_patches) // len(kid_patches))

Query: What would the founder of the brand of the car on the left say to the founder of the brand of the car on the right?

Result:“Ferruccio Lamborghini might say, ‘It’s been an honor to be a rival of yours for so many years, Enzo.
May our cars continue to push each other to be better and faster!’ ”

► left_car_founder=‘Ferruccio Lamborghini’
► right_car_founder=‘Enzo Ferrari’

car_patches =
image_patch.find("car")

,
► left_car_brand=‘lamborghini’
► right_car_brand=‘ferrari’

car_patches.sort(...)

,

def execute_command(image):
 image_patch = ImagePatch(image)
 car_patches = image_patch.find("car")
 car_patches.sort(key=lambda car: car.horizontal_center)
 left_car = car_patches[0]
 right_car = car_patches[-1]
 left_car_brand = left_car.simple_query("What is the brand of this car?")
 right_car_brand = right_car.simple_query("What is the brand of this car?")
 left_car_founder = llm_query(f"Who is the founder of {left_car_brand}?")
 right_car_founder = llm_query(f"Who is the founder of {right_car_brand}?")
 return llm_query(f"What would {left_car_founder} say to {right_car_founder}?")

Result:“The competition between the Chrysler Building and the Empire State Building is one of the most famous rivalries in the
history of architecture. Built in the 1930s in New York City, the two skyscrapers were the tallest buildings in the world for a time. The
Chrysler Building, designed by William Van Alen and completed in 1930, was the first to reach a height of 1,046 feet, temporarily ...”

Query: Return the two kids that are furthest from the woman right before she hugs the girl
def execute_command(video):
 video_segment = VideoSegment(video)
 hug_detected = False
 for i, frame in enumerate(video_segment.frame_iterator()):
 if frame.exists("woman") and frame.exists("girl") and \
 frame.simple_query("Is the woman hugging the girl?") == "yes":
 hug_detected = True
 break
 if hug_detected:
 index_frame = i - 1
 frame_of_interest = ImagePatch(video_segment, index_frame)
 woman_patches = frame_of_interest.find("woman")
 woman_patch = woman_patches[0]
 kid_patches = frame_of_interest.find("kid")
 kid_patches.sort(key=lambda kid: distance(kid, woman_patch))
 kid_patch_1 = kid_patches[-1]
 kid_patch_2 = kid_patches[-2]
 return [kid_patch_1, kid_patch_2]

► hug_detected=True
► frame=

► frame_of_interest=

► kid_patches=

Result:

► kid_patches=
sort(...distance...)

Generated Code

Query: Drink with zero alcohol

► drink_name = ‘gin’
► alcoholic = ‘yes’

► drink_name = ‘tullamore dew’
► alcoholic = ‘yes’

► drink_name = ‘bacardi’
► alcoholic = ‘yes’

► drink_name = ‘dr pepper’
► alcoholic = ‘no’

► drink_patches=

Result:
def execute_command(image):
 image_patch = ImagePatch(image)
 drink_patches = image_patch.find("drink")
 for drink_patch in drink_patches:
 drink_name = drink_patch.simple_query("What is this?")
 alcoholic = llm_query(f"Does the {drink_name} have alcohol?")
 if alcoholic == "no":
 return drink_patch
 return None

Figure 1. In-the-wild results. Given a visual input and a query, ViperGPT synthesizes a program, then executes it with the Python
interpreter in order to produce the final answer. This figure shows both the generated code, and the result of intermediate variables during
the execution. By composing pretrained modules, ViperGPT obtains answers that are both correct and interpretable for open-world queries.

with intermediate values that can be inspected; 2) logical, as
it explicitly uses built-in Python logical and mathematical
operators; 3) flexible, as it can easily incorporate any vision
or language module, only requiring the specification of the
associated module be added to the API; 4) compositional,
decomposing tasks into smaller sub-tasks performed step-
by-step; 5) adaptable to advances in the field, as improve-
ments in any of the used modules will result in a direct im-
provement in our approach’s performance; 6) training-free,
as it does not require to re-train (or finetune) a new model
for every new task; and finally, 7) general, as it unifies all
tasks into one system.

In summary, our contributions are:
1. We propose a simple framework for solving complex

visual queries by integrating code-generation models
into vision with an API and the Python interpreter, with
the benefits above.

2. We achieve state-of-the-art zero-shot results across
tasks in visual grounding, image question answer-
ing, and video question-answering, showing this inter-
pretability aids performance rather than hindering it.

3. To promote research in this direction, we develop a
Python library enabling rapid development for pro-
gram synthesis for visual tasks, which will be open-
sourced upon publication.

2. Related Work
Modular Vision. Our work takes inspiration from Neu-

ral Module Networks [2, 27], who argue that complex vi-
sion tasks are fundamentally compositional and propose di-
viding them into atomic perceptual units. This visual rea-
soning procedure has been explored by a variety of works
[29, 57]. Posterior efforts have focused on explicitly reason-
ing about the composition by separating the reasoning from
the perception, with connections to neuro-symbolic meth-
ods [19, 27, 62]. These approaches are similar in spirit to
ours, but require expensive supervision in the form of pro-
grams and end-to-end train the perception modules, which
makes them not generalizable to different domains.

Due to the practical difficulty of using these methods,
the field has primarily moved towards end-to-end all-in-one
models [1, 22, 23, 30]. Such models currently obtain state-
of-the-art results, and we compare to them in Section 4.
Other recent works [63, 45, 55, 35, 37, 15] show that large
pretrained models can be used together to great effect, but
hand-specify the particular way models are combined.

Over the course of this project, a surge of interest in the
area has resulted in a number of related manuscripts ap-
pearing on arXiv which use large language models (LLMs)
for automatic module integration. In the natural language
processing domain, they have been aimed at using exter-
nal tools [46, 40], or for structured reasoning using Codex
[34, 54, 14, 10]. Concurrent work [17] generates a list

Generated Code

Code Execution

Result: “Shiba Inu”

API Specification
 """
def find(image, object_name) -> List[torch.Tensor]:
 """Return object_name in image"""
def compute_depth(image) -> torch.Tensor:
 """Return estimated depth"""
def exists(image, object_name) -> bool:
 """Return True if object_name is in image"""
def llm_query(text) -> text:
 """Return similarity between text and image"""
def verify_property(image, object_name, property) -> bool:
 """Returns True if the object has the property"""

def process_query_function(image):
 image_patch = ImagePatch(image)
 pets = image_patch.find("pet")
 pets_sorted = ...
 ...
 return result

Python Interpreter
+

API Implementation

“Which pet is in
the top left?”

Code LLM

Query Visual Input

ViperGPT

Figure 2. Method. ViperGPT is a framework for solving complex
visual queries programmatically.

of pseudocode instructions and interprets them as a ‘vi-
sual program,’ relying on in-context learning from provided
examples. Unlike them, we directly generate unrestricted
Python code, which is much more flexible and enables us
to demonstrate more advanced emergent abilities, such as
control flow and math. Crucially, using Python allows us to
leverage the strong prior knowledge Codex learns by train-
ing at scale from the Internet. Additionally, we evaluate on
many established benchmarks measuring visual understand-
ing and achieve top-performing zero-shot results.

Interpretability. The area of interpretability for com-
plex queries in vision is extensive. Many approaches pro-
vide explanations in the form of pixel importance, à la Grad-
CAM [47, 65, 11, 41], some also providing textual expla-
nations [41]. These are often post-hoc explanations rather
than by construction, and do not give step-by-step reason-
ing including image crops and text. Hard attention in cap-
tioning [59] aims for a similar goal regarding intermediate
image crops, similarly to our find module, but has proven
difficult to incorporate into learning algorithms. See He et
al. [18] for a complete overview.

Pretrained models. The perception and external knowl-
edge modules used by ViperGPT are GLIP [31] for object
detection, X-VLM [64] for text-image similarity (as it sur-
passes CLIP [43] at attribute detection [5]), MiDaS [44] for
depth estimation, GPT-3 [6] for external knowledge, and
BLIP-2 [30] for simple visual queries.

3. Method
We use notation following Johnson et al. [27]. Given a

visual input x and a textual query q about its contents, we
first synthesize a program z = π(q) with a program gener-
ator π given the query. We then apply the execution engine
r = ϕ(x, z) to execute the program z on the input x and pro-

pizza.compute_depth()

0.3

0.7

def execute_command(image):
 image_patch = ImagePatch(image)
 pizza_patches = image_patch.find("pizza")
 pizza_patches.sort(key=lambda pizza: pizza.compute_depth())
 patch_return = pizza_patches[0]
 return patch_return

Query: pizza front

pizza_patches = image_patch.find("pizza")

patch_return = pizza_patches[0]
return patch_return

pizza_patches.sort()

,

Result:

Generated code

Execution

► pizza_patches= {List[ImagePatch]}

In:

,

Figure 3. Visual grounding on RefCOCO.

duce a result r. Our framework is flexible, supporting image
or videos as inputs x, questions or descriptions as queries q,
and any type (e.g., text or image crops) as outputs r.

While prior work represents programs as graphs, like
syntax trees [27] or dependency graphs [8], we represent
the class of programs z ∈ Z directly through Python code,
allowing our programs to capitalize on the expressivity and
capabilities afforded by modern programming languages.

3.1. Program Generation

Johnson et al. [27] and other work in this direction [19,
62, 25] typically implement π with a neural network that is
trained with either supervised or reinforcement learning in
order to estimate programs from queries. However, these
approaches have largely been unable to scale to in-the-wild
settings because either a) the supervision in the form of pro-
grams cannot be collected at scale or b) the optimization re-
quired for finding the computational graph is prohibitive.

In our approach, we instead capitalize on LLMs for
code generation in order to instantiate the program gen-
erator π that composes vision and language modules to-
gether. LLMs take as input a tokenized code sequence
(“prompt”) and autoregressively predict subsequent tokens.
We use Codex [9], which has shown remarkable success
on code generation tasks. Since we replace the optimiza-
tion of π with an LLM, our approach obviates the need for
task-specific training for program generation. Using Codex
as the program generator and generating code directly in
Python allows us to draw on training at scale on the Inter-
net, where Python code is abundant.

To leverage LLMs in this way, we need to define a
prompt that will sample programs z that compose and call

Table 1. RefCOCO Results. We report accuracy on the REC task
and testA split. ZS=zero shot, Sup.=supervised.

IoU (%) ↑
RefCOCO RefCOCO+

Su
p. MDETR [53] 90.4 85.5

OFA [53] 94.0 91.7

Z
S

OWL-ViT [38] 30.3 29.4
GLIP [31] 55.0 52.2
ReCLIP [49] 58.6 60.5
ViperGPT (ours) 72.0 67.0

these modules as needed. Our prompt consists of an appli-
cation programming interface (API), detailed in the follow-
ing section, which we provide to the LLM as part of its in-
put context. The final input to the LLM is a sequence of
code text consisting of the API specification followed by
the query for the sample under consideration. The expected
output is a Python function definition as a string, which we
then compile and execute.

3.2. Modules and Their API

Our prompt, included in the Appendix B, provides the
API for different perceptual and knowledge modules, such
as for object detection, depth estimation, or language model
queries. From this prompt, we found that LLMs are able to
induce correct programs z from the query q.

The API we provide defines two global classes
ImagePatch and VideoSegment, which represent an image
patch and a video segment respectively. Each module is
implemented as a class method, which internally calls a
pretrained model to compute the result. For example, the
compute_depth method of ImagePatch returns an estimate
of the median (relative) depth of the pixels in the image
patch; we implement this with state-of-the-art large-scale
models such as MiDaS [44]. We provide more details about
the modules used in Section 4.

The API specifies the input and output types for each
method it defines, as well as docstrings to explain the pur-
pose of these functions in natural language. Like most APIs,
it additionally provides examples that show how to use these
classes and their functions, specified in the form of query-
code pairs similarly to in-context learning [50, 6].

The input to Codex does not contain the full implementa-
tion of the API. Instead, it is given the specification for the
API, including the function signatures and docstrings. Ab-
stracting away the implementation details is beneficial for
two reasons. First, LLM context windows are limited in size
[6], making it infeasible to include the entire implementa-
tion. In addition, the abstraction makes code generation in-
dependent of changes made to the module implementation.

End-to-end perception modules are excellent when used
in the right places, and ViperGPT strongly relies on them.

Generated code

Result:“yes”

def execute_command(image):
 image_patch = ImagePatch(image)
 bookcase_patches = image_patch.find("bookcase")
 for bookcase_patch in bookcase_patches:
 is_wood = bookcase_patch.verify_property("bookcase", "wood")
 if is_wood:
 water_bottle_patches = image_patch.find("water bottle")
 for water_bottle_patch in water_bottle_patches:
 if water_bottle_patch.horizontal_center > \
 bookcase_patch.horizontal_center:
 return "yes"
 return "no"
 return "no"

Query: Are there water bottles to the right of
 the bookcase that is made of wood?

Execution

water_bottle_patches = image_patch.
 find("water bottle")
► water_bottle_patches[0]
 = {ImagePatches}

► water_bottle_patches[0].
 horizontal_center = {float} 608.5

► water_bottle_patch.horizontal_center >
bookcase_patch.horizontal_center =
{bool} True

bookcase_patches= image_patch.
 find("bookcase")
► bookcase_patches[0] = {ImagePatch}

► bookcase_patches[0].
 horizontal_center = {float} 239.0

...verify_property("bookcase","wood")

► is_wood = {bool} True

In:

def execute_command(image):
 image_patch = ImagePatch(image)
 pancake_patches = image_patch.find("pancake")
 is_brown = pancake_patches[0].verify_property("pancake", "brown")
 is_round = pancake_patches[0].verify_property("pancake", "round")
 return bool_to_yesno(is_brown and is_round)

Query: Does that pancake look brown
 and round?

...verify_property("pancake", "brown")
► is_brown = {bool} True

...verify_property("pancake", round)
► is_round = {bool} True

► is_brown and is_round = {bool} True

Result: “yes”

Generated code

pancake_patches = image_patch.
 find("pancake")
► pancake_patches[0] = {ImagePatch}

Execution

In:

Figure 4. Compositional image question answering on GQA.

Analogous to dual-system models [28] in cognitive science,
we argue that generated programs (System 2 - analytic)
should be utilized to break down tasks that require multi-
ple steps of reasoning into simpler components, where end-
to-end perception modules (System 1 - pattern recognition)
are the most effective approach. By composing end-to-end
modules into programs, ViperGPT brings the System 2 ca-
pability of sequential processing to deep learning [4].

3.3. Program Execution

At execution time, the generated program z accepts an
image or video as input and outputs a result r corresponding
to the query provided to the LLM. To execute this program,
previous work (e.g., [27]) learns an execution engine ϕ as a
neural module network, composing various modules imple-
mented by neural networks. Their modules are responsible
for not only perceptual functions such as find, but also log-
ical ones such as compare. They learn all neural modules
together simultaneously end-to-end, which fails to enable
systematic generalization [3] and results in modules that are
not faithful to their intended tasks [48], compromising the
interpretability of the model.

We provide a simple, performant alternative by using
the Python interpreter in conjunction with modules imple-
mented by large pretrained models. The Python interpreter
enables logical operations while the pretrained models en-
able perceptual ones. Our approach guarantees faithfulness
by construction.

The program is run with the Python interpreter; as such,
its execution is a simple Python call. This means it can
leverage all built-in Python functions like sort; control flow
tools like for or if/else; and modules such as datetime

or math. Notably, this does not require a custom interpreter,
unlike prior approaches [17, 46] Another advantage of a

Table 2. GQA Results. We report accuracy on the test-dev set.

Accuracy (%) ↑

Su
p.

LGCN [20] 55.8
LXMERT [51] 60.0
NSM [24] 63.0
CRF [39] 72.1

Z
S BLIP-2 [30] 44.7

ViperGPT (ours) 48.1

fully Pythonic implementation is compatibility with a wide
range of existing tools, such as PyTorch JIT [42].

In our implementation, each program in a gener-
ated batch is run simultaneously with multiprocessing.
Our producer-consumer design [12] enables efficient GPU
batching, reducing the memory and computation costs. Our
code is made available at viper.cs.columbia.edu/.

4. Evaluation

ViperGPT is applicable to any tasks that query visual in-
puts with text. Unlike other work using large language mod-
els for vision tasks, the return values of our programs can be
of arbitrary types, such as text, multiple choice selections,
or image regions. We select four different evaluation set-
tings to showcase the model’s diverse capabilities in varied
contexts without additional training. The tasks we consider
are: 1) visual grounding, 2) compositional image question
answering, 3) external knowledge-dependent image ques-
tion answering, and 4) video causal and temporal reasoning.

We consider these tasks to roughly build on one another,
with visual grounding being a prerequisite for composi-
tional image question answering and so on. In the follow-
ing sections, we explore the capabilities ViperGPT demon-
strates in order to solve each task.

https://viper.cs.columbia.edu/

def execute_command(image):
 image = ImagePatch(image)
 toy = image.simple_query("What is this toy?")
 result = llm_query("The real live version of
 {} does what in the winter?", toy)
 return result

Query: The real live version of this toy
 does what in the winter?
Generated code

► toy = {str} "bear"

► guess = {str} "hibernate"

BLIP-2 result: “ski”
Result: “hibernate”

Execution

In:

Figure 5. Programmatic chain-of-thought with external knowl-
edge for OK-VQA.

4.1. Visual Grounding

Visual grounding is the task of identifying the bound-
ing box in an image that corresponds best to a given nat-
ural language query. Visual grounding tasks evaluate rea-
soning about spatial relationships and visual attributes. We
consider this task first as it serves as the first bridge be-
tween text and vision: many tasks require locating complex
queries past locating particular objects.

We provide ViperGPT with the API for the following
modules (pretrained models in parentheses). find (GLIP
[31]) takes as input an image and a short noun phrase (e.g.
“car” or “golden retriever”), and returns a list of image
patches containing the noun phrase. exists (GLIP [31]) takes
as input an image and a short noun phrase and returns a
boolean indicating whether an instance of that noun phrase
is present in the image. Similarly, verify_property (X-
VLM [64]) takes as input an image, a noun phase representing
an object, and an attribute representing a property of that ob-
ject; it returns a boolean indicating whether the property is
present in the image. best_image_match (X-VLM [64]) takes
as input a list of image patches and a short noun phrase, and
returns the image patch that best matches the noun phrase.
Symmetric to this operation, best_text_match takes as in-
put a list of noun phrases and one image, and returns the
noun phrase that best matches the image. (This module
is not necessary for visual grounding, but rather for tasks
with text outputs; we describe it here for simplicity.) They
are implemented using an image-text similarity model as in
CLIP [43]. Finally, compute_depth (MiDaS [44]) computes
the median depth of the image patch. We also define the
function distance, which computes the pixel-distance be-
tween two patches, using only built-in Python tools.

For evaluation, we use the RefCOCO and RefCOCO+
datasets. The former allows for spatial relations while the
latter does not, thereby providing different insights into
ViperGPT’s capabilities. We compare ViperGPT against end-
to-end methods, and outperform other zero-shot methods
on both datasets (see Table 1). We show examples2 in Fig-
ure 3. See Appendix A for more details about the experi-
mental setup.

2Examples in the paper have been cosmetically cleaned by removing
comments and error handling, but the logic is unchanged.

Table 3. OK-VQA Results.

Accuracy (%) ↑

Su
p.

TRiG [13] 50.5
KAT [16] 54.4
RA-VQA [32] 54.5
REVIVE [33] 58.0
PromptCap [21] 58.8

Z
S

PNP-VQA [52] 35.9
PICa [60] 43.3
BLIP-2 [30] 45.9
Flamingo [1] 50.6
ViperGPT (ours) 51.9

4.2. Compositional Image Question Answering

We also evaluate ViperGPT on image question answering.
We focus on compositional question answering, which re-
quires decomposing complex questions into simpler tasks.
We use the GQA dataset [26], which was created to measure
performance on complex compositional questions. Con-
sider Figure 4 for example questions as well as our pro-
vided reasoning. Even if a question can be answered end-to-
end, it is both more interpretable and more human-aligned
to provide intermediate reasoning rather than requiring the
model to compress all steps into one forward pass; as our fi-
nal result is constructed directly from the intermediate val-
ues, they provide a fully faithful interpretation of how the
model came to its answer.

For GQA, we incorporate the module simple_query

(BLIP-2 [31]), which handles basic queries that are not further
decomposable, such as “What animal is this?” We also add
the aforementioned best_text_match. This leads us to the
best accuracy on GQA among zero-shot models (Table 4).

4.3. External Knowledge-dependent Image Ques-
tion Answering

Many questions about images can only be answered cor-
rectly by integrating outside knowledge about the world. By
equipping ViperGPTwith a module to query external knowl-
edge bases in natural language, it can combine knowledge
with visual reasoning to handle such questions. We add
a new module llm_query (GPT-3 [6]), which exploits text
models as unstructured knowledge bases. We find that the
combination of step-by-step reasoning from Codex along
with external knowledge queried from GPT-3’s text model
achieves impressive performance in this setting.

We evaluate on the OK-VQA dataset [36], which is de-
signed to evaluate models’ ability to answer questions about
images that require knowledge that cannot be found in the
image. Items in this dataset often require more than one
step of reasoning to produce a correct answer. For exam-
ple, in Figure 5, one must first perceive from the image that

Generated code
def execute_command(video, question, possible_answers):
 video_segment = VideoSegment(video)
 drop_detected = False
 for i, frame in enumerate(video_segment.frame_iterator()):
 if frame.exists("boy") and frame.exists("sparkles") and \
 frame.simple_query("is the boy dropping the sparkles?") == "yes":
 drop_detected = True
 break
 if drop_detected:
 index_frame = i + 1
 else:
 index_frame = video_segment.num_frames // 2
 frame_of_interest = ImagePatch(video_segment, index_frame)
 boys = frame_of_interest.find("boy")
 if len(boys) == 0:
 boys = [frame_of_interest]
 boy = boys[0]
 caption = boy.simple_query("What is this?")
 info = {
 "Caption of frame after dropping the sparkles": caption,
 }
 answer = select_answer(info, question, possible_answers)
 return answer

Query: What did the boy do after he dropped the
 sparkles on the floor?

► i= {int} 25

► frame = {ImagePatch}

frame.exists("boy") and \
frame.exists("sparkles") and \
frame.simple_query("is the boy
 dropping the sparkles?") == "yes":

► answer = {str} "pick it up"

► frame_of_interest = {ImagePatch}

► boy = {ImagePatch}

► caption = {str} "a child running
 with fire in his hands"

index_frame = i + 1

► index_frame = {int} 26

boys = frame_of_interest.find("boy")

In:

Execution

Result: “Pick it up”

def execute_command(video, question, possible_answers):
 video_segment = VideoSegment(video)
 last_frame = ImagePatch(video_segment, -1)
 last_caption = last_frame.simple_query("What is this?")
 dogs = last_frame.find("dog")
 if len(dogs) == 0:
 dogs = [last_frame]
 dog = dogs[0]
 dog_action = dog.simple_query("What is the dog doing?")
 info = {
 "Caption of last frame": last_caption,
 "Dog looks like he is doing": dog_action
 }
 answer = select_answer(info, question, possible_answers)
 return answer

Query: How does the black dog position himself
 at the end?

► last_frame = {ImagePatch}

last_frame =
 ImagePatch(video_segment, -1)

► answer = {str} "sit on the ground"

► dog = {ImagePatch}

► last_caption = {str} "a black dog
 sitting in the grass"

dogs = last_frame.find("dog")

dog_action = dog.simple_query(
 "What is the dog doing?")

► dog_action= {str} "sitting"

Generated code

Execution

In:

Result: “Sit on the ground”

Figure 6. Temporal reasoning on NeXT-QA.

“this toy” is a “bear,” then use external knowledge to an-
swer what bears do in the winter. End-to-end models must
directly produce an answer, and therefore may pick words
that are more directly related to the image than the question
intended. In this case, the best available end-to-end model
guesses “ski,” presumably as that is a common winter activ-
ity (though, not for bears). ViperGPT, on the other hand, can
employ a form of chain-of-thought reasoning [56] to break
down the question as previously described, first determin-
ing the type of toy using perception modules and then us-
ing the perceived information in conjunction with an exter-
nal knowledge module to produce the correct response.
ViperGPT outperforms all zero-shot methods, and when

compared to models using publicly available resources, it
surpasses the best previous model by 6%, a wide margin for
this dataset (see Table 3).

4.4. Video Causal/Temporal Reasoning

We also evaluate how ViperGPT extends to videos and
queries that require causal and temporal reasoning. To ex-
plore this, we use the NExT-QA dataset, designed to evalu-
ate video models ability to perform this type of reasoning.

Table 4. NExT-QA Results. Our method gets overall state-of-the-
art results (including supervised models) on the hard split. “T” and
“C” stand for “temporal” and “causal” questions, respectively.

Accuracy (%) ↑
Hard Split - T Hard Split - C Full Set

Su
p.

ATP [7] 45.3 43.3 54.3
VGT [58] - - 56.9
HiTeA [61] 48.6 47.8 63.1

Z
S ViperGPT (ours) 49.8 56.4 60.0

We evaluate using the NExT-QA multiple choice version.
We provide an additional module select_answer

(GPT-3 [6]), which, given textual information about a scene
and a list of possible answers, returns the answer that
best fits the information. Other than that, the only addi-
tional content given in the API is the definition of the class
VideoSegment, that contains the video bytestream as well
as the start and end timestamps of the video segment that it
represents. It also defines an iterator over the frames, which
returns an ImagePatch object representing every frame.

We find that despite only being provided with perception
modules for images, ViperGPT displays emergent causal and

Figure 7. Intervention.
We analyze the impor-
tance of various vision
modules and Python
functions in the gener-
ated programs as mea-
sured by the drop in
mIoU when they are
made nonfunctional.

find
exists
verify_property
best_image_match
compute_depth
distance
sort
>, <
+, -, *, /

-70 -52.5 -35 -17.5 0

Relative decrease in mIoU(%)

temporal reasoning when applied to videos provided as an
ordered list of images. In particular, we observe it generates
programs that apply perception to determine which frames
are relevant for a given query, then reasons about the infor-
mation extracted from these frames along with associated
frame numbers to produce a final answer.

Despite seeing no video data whatsoever, ViperGPT
achieves accuracy results on par with the best supervised
model (see Table 4), and even surpassing it on the NeXT-
QA hard split [7], both for temporal and causal queries. Of
course, the framework of ViperGPT also allows for incorpo-
ration of video models, which we expect would further im-
prove the performance well beyond this threshold.

Computational ability presents even more of an obsta-
cle for video understanding than for images. It is infeasi-
ble to fit every frame of a moderately-sized video into GPU
memory on even the best hardware. ViperGPT may provide
a way forward for video understanding that overcomes the
limitations of systems that need to perform computation on
a whole video simultaneously. See examples in Figure 6.

5. Exploring New Capabilities
In this section, we showcase various interesting capabil-

ities enabled by use of ViperGPT.

5.1. Queries Beyond Benchmarks

We believe that the evident strength of this approach may
not be adequately explored by existing benchmarks, which
are designed for end-to-end models. In Figure 1, we show
examples of interesting queries that are interesting in the
real world but would not show up in existing benchmarks.
We do not add any new API specifications other than the
ones already used in the benchmarks. See the Appendix B
for more details.

These examples show that the modules we included
are general and cover a wide range of tasks. In settings
where new capabilities are required, the framework is gen-
eral and permits the addition of any modules, like ocr,
surface_normal_estimation, segmentation, etc.

5.2. Interventional Explainability

Our programmatic approach enables automatic diagno-
sis of which modules are responsible for prediction errors,

Context: the picture was taken in the US
def execute_command(image):
 cars = image.find("car")
 for car in cars:
 if car.horizontal_center > image.horizontal_center:
 return car
 return None

Query: Return the car that is on the correct lane

Context: the picture was taken in the UK
def execute_command(image):
 cars = image.find("car")
 for car in cars:
 if car.horizontal_center < image.horizontal_center:
 return car
 return None

Result:None

Result:

Figure 8. Contextual programs. ViperGPT readily incorporates
additional context into the logic of the generated programs.

potentially informing which types of models to improve
and where to collect more data. Evaluating the intermedi-
ate output of each module is impractical due to the lack of
ground truth labels, and naively comparing accuracy be-
tween programs that use a certain module and those that
do not could be confounded e.g. by the difficulty of the
problem. We can instead perform interventions to better
understand a module’s performance. For each module, we
can define a default value that provides no information, and
substitute the underlying model for this default output. For
instance, find could always return the full input image. We
can then consider how much performance drops if evaluat-
ing the same code for the examples that use that module. If
the intervention has a minimal impact on performance, the
module is likely not useful.

We show an example of this analysis in Figure 7 for vi-
sual grounding on RefCOCO, where we observe a similar
level of importance for perception modules and Python op-
erations. Both are tightly integrated in our approach.

5.3. Conditioning on Additional Information

We found ViperGPT readily admits program generation
based on additional knowledge. This context can be pro-
vided as a comment prior to the code generation. Such con-
text can be critical to correctly responding to a wide range
of queries. In Figure 8 we show one such example. The cor-
rect side of the road varies by country, so the initial query
cannot be answered. Provided with the context of where
the photo was taken, the model produces different logic for
each case, adjusted based on the relevant prior knowledge.

6. Conclusions
We present ViperGPT, a framework for programmatic

composition of specialized vision, language, math, and
logic functions for complex visual queries. ViperGPT is ca-
pable of connecting individual advances in vision and lan-
guage; it enables them to show capabilities beyond what
any individual model can do on its own. As the models im-
plementing these functions continue to improve, we expect
ViperGPT’s results will also continue to improve in tandem.

Acknowledgements: This research is based on work partially
supported by the DARPA MCS program under Federal Agreement
No. N660011924032 and the NSF CAREER Award #2046910.
DS is supported by the Microsoft PhD Fellowship and SM is sup-
ported by the NSF GRFP.

References
[1] Jean-Baptiste Alayrac, Jeff Donahue, Pauline Luc, Antoine

Miech, Iain Barr, Yana Hasson, Karel Lenc, Arthur Men-
sch, Katherine Millican, Malcolm Reynolds, Roman Ring,
Eliza Rutherford, Serkan Cabi, Tengda Han, Zhitao Gong,
Sina Samangooei, Marianne Monteiro, Jacob Menick, Se-
bastian Borgeaud, Andrew Brock, Aida Nematzadeh, Sa-
hand Sharifzadeh, Mikolaj Binkowski, Ricardo Barreira,
Oriol Vinyals, Andrew Zisserman, and Karen Simonyan.
Flamingo: a visual language model for few-shot learning.
In Alice H. Oh, Alekh Agarwal, Danielle Belgrave, and
Kyunghyun Cho, editors, Advances in Neural Information
Processing Systems, 2022.

[2] Jacob Andreas, Marcus Rohrbach, Trevor Darrell, and Dan
Klein. Neural module networks. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recogni-
tion (CVPR), June 2016.

[3] Dzmitry Bahdanau, Shikhar Murty, Michael Noukhovitch,
Thien Huu Nguyen, Harm de Vries, and Aaron Courville.
Systematic Generalization: What Is Required and Can It Be
Learned?, Apr. 2019. arXiv:1811.12889 [cs].

[4] Yoshua Bengio. The Consciousness Prior, Dec. 2019.
arXiv:1709.08568 [cs, stat].

[5] Maria A. Bravo, Sudhanshu Mittal, Simon Ging, and
Thomas Brox. Open-vocabulary attribute detection. arXiv
preprint arXiv:2211.12914, 2022.

[6] Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Sub-
biah, Jared Kaplan, Prafulla Dhariwal, Arvind Neelakan-
tan, Pranav Shyam, Girish Sastry, Amanda Askell, Sand-
hini Agarwal, Ariel Herbert-Voss, Gretchen Krueger, Tom
Henighan, Rewon Child, Aditya Ramesh, Daniel M. Ziegler,
Jeffrey Wu, Clemens Winter, Christopher Hesse, Mark Chen,
Eric Sigler, Mateusz Litwin, Scott Gray, Benjamin Chess,
Jack Clark, Christopher Berner, Sam McCandlish, Alec Rad-
ford, Ilya Sutskever, and Dario Amodei. Language Models
are Few-Shot Learners. arXiv:2005.14165 [cs], July 2020.
arXiv: 2005.14165.

[7] Shyamal Buch, Cristóbal Eyzaguirre, Adrien Gaidon, Jiajun
Wu, Li Fei-Fei, and Juan Carlos Niebles. Revisiting the"
video" in video-language understanding. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 2917–2927, 2022.

[8] Qingxing Cao, Xiaodan Liang, Bailin Li, and Liang Lin. In-
terpretable Visual Question Answering by Reasoning on De-
pendency Trees. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 43(3):887–901, Mar. 2021.

[9] Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Hen-
rique Ponde, Jared Kaplan, Harrison Edwards, Yura Burda,
Nicholas Joseph, Greg Brockman, Alex Ray, Raul Puri,
Gretchen Krueger, Michael Petrov, Heidy Khlaaf, Girish

Sastry, Pamela Mishkin, Brooke Chan, Scott Gray, Nick Ry-
der, Mikhail Pavlov, Alethea Power, Lukasz Kaiser, Moham-
mad Bavarian, Clemens Winter, Philippe Tillet, Felipe Pet-
roski Such, David W. Cummings, Matthias Plappert, Fotios
Chantzis, Elizabeth Barnes, Ariel Herbert-Voss, William H.
Guss, Alex Nichol, Igor Babuschkin, S. Arun Balaji, Shan-
tanu Jain, Andrew Carr, Jan Leike, Joshua Achiam, Vedant
Misra, Evan Morikawa, Alec Radford, Matthew M. Knight,
Miles Brundage, Mira Murati, Katie Mayer, Peter Welin-
der, Bob McGrew, Dario Amodei, Sam McCandlish, Ilya
Sutskever, and Wojciech Zaremba. Evaluating large lan-
guage models trained on code. ArXiv, abs/2107.03374, 2021.

[10] Wenhu Chen, Xueguang Ma, Xinyi Wang, and William W.
Cohen. Program of thoughts prompting: Disentangling com-
putation from reasoning for numerical reasoning tasks. arXiv
preprint arXiv:2211.12588, 2022.

[11] Chaorui Deng, Qi Wu, Qingyao Wu, Fuyuan Hu, Fan Lyu,
and Mingkui Tan. Visual Grounding via Accumulated At-
tention.

[12] E.W. Dijkstra. Information streams sharing a finite buffer.
Information Processing Letters, 1(5):179–180, 1972.

[13] Feng Gao, Qing Ping, Govind Thattai, Aishwarya Reganti,
Ying Nian Wu, and Prem Natarajan. Transform-retrieve-
generate: Natural language-centric outside-knowledge vi-
sual question answering. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition,
pages 5067–5077, 2022.

[14] Luyu Gao, Aman Madaan, Shuyan Zhou, Uri Alon, Pengfei
Liu, Yiming Yang, Jamie Callan, and Graham Neubig.
Pal: Program-aided language models. arXiv preprint
arXiv:2211.10435, 2022.

[15] Prajwal Gatti, Abhirama Subramanyam Penamakuri, Revant
Teotia, Anand Mishra, Shubhashis Sengupta, and Roshni
Ramnani. Cofar: Commonsense and factual reasoning in
image search. In Proceedings of the 2nd Conference of the
Asia-Pacific Chapter of the Association for Computational
Linguistics and the 12th International Joint Conference on
Natural Language Processing, pages 1185–1199, 2022.

[16] Liangke Gui, Borui Wang, Qiuyuan Huang, Alexander
Hauptmann, Yonatan Bisk, and Jianfeng Gao. KAT: A
knowledge augmented transformer for vision-and-language.
In Proceedings of the 2022 Conference of the North Ameri-
can Chapter of the Association for Computational Linguis-
tics: Human Language Technologies, pages 956–968, Seat-
tle, United States, July 2022. Association for Computational
Linguistics.

[17] Tanmay Gupta and Aniruddha Kembhavi. Visual pro-
gramming: Compositional visual reasoning without training.
arXiv preprint arXiv:2211.11559, 2022.

[18] Feijuan He, Yaxian Wang, Xianglin Miao, and Xia Sun. In-
terpretable visual reasoning: A survey. Image and Vision
Computing, 112:104194, 2021.

[19] Ronghang Hu, Jacob Andreas, Marcus Rohrbach, Trevor
Darrell, and Kate Saenko. Learning to Reason: End-to-
End Module Networks for Visual Question Answering. 2017
IEEE International Conference on Computer Vision (ICCV),
pages 804–813, Oct. 2017. Conference Name: 2017 IEEE

International Conference on Computer Vision (ICCV) ISBN:
9781538610329 Place: Venice Publisher: IEEE.

[20] Ronghang Hu, Anna Rohrbach, Trevor Darrell, and Kate
Saenko. Language-conditioned graph networks for relational
reasoning. In Proceedings of the IEEE/CVF international
conference on computer vision, pages 10294–10303, 2019.

[21] Yushi Hu, Hang Hua, Zhengyuan Yang, Weijia Shi, Noah A
Smith, and Jiebo Luo. Promptcap: Prompt-guided task-
aware image captioning. arXiv preprint arXiv:2211.09699,
2022.

[22] Ziniu Hu, Ahmet Iscen, Chen Sun, Zirui Wang, Kai-Wei
Chang, Yizhou Sun, Cordelia Schmid, David A Ross, and
Alireza Fathi. Reveal: Retrieval-augmented visual-language
pre-training with multi-source multimodal knowledge mem-
ory. arXiv preprint arXiv:2212.05221, 2022.

[23] Shaohan Huang, Li Dong, Wenhui Wang, Yaru Hao,
Saksham Singhal, Shuming Ma, Tengchao Lv, Lei Cui,
Owais Khan Mohammed, Qiang Liu, et al. Language is not
all you need: Aligning perception with language models.
arXiv preprint arXiv:2302.14045, 2023.

[24] Drew Hudson and Christopher D Manning. Learning by ab-
straction: The neural state machine. Advances in Neural In-
formation Processing Systems, 32, 2019.

[25] Drew A. Hudson and Christopher D. Manning. Composi-
tional Attention Networks for Machine Reasoning. ArXiv,
2018.

[26] Drew A. Hudson and Christopher D. Manning. GQA: A New
Dataset for Real-World Visual Reasoning and Compositional
Question Answering, May 2019. arXiv:1902.09506 [cs].

[27] Justin Johnson, Bharath Hariharan, Laurens van der Maaten,
Judy Hoffman, Li Fei-Fei, C. Lawrence Zitnick, and Ross
Girshick. Inferring and Executing Programs for Visual Rea-
soning. pages 2989–2998, 2017.

[28] Daniel Kahneman. Thinking, fast and slow. macmillan,
2011.

[29] Seung Wook Kim, Makarand Tapaswi, and Sanja Fidler. Vi-
sual reasoning by progressive module networks. In Interna-
tional Conference on Learning Representations, 2019.

[30] Junnan Li, Dongxu Li, Silvio Savarese, and Steven Hoi.
BLIP-2: Bootstrapping Language-Image Pre-training with
Frozen Image Encoders and Large Language Models, Jan.
2023. arXiv:2301.12597 [cs].

[31] Liunian Harold Li, Pengchuan Zhang, Haotian Zhang, Jian-
wei Yang, Chunyuan Li, Yiwu Zhong, Lijuan Wang, Lu
Yuan, Lei Zhang, Jenq-Neng Hwang, et al. Grounded
language-image pre-training. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 10965–10975, 2022.

[32] Weizhe Lin and Bill Byrne. Retrieval augmented visual ques-
tion answering with outside knowledge. In Proceedings of
the 2022 Conference on Empirical Methods in Natural Lan-
guage Processing, pages 11238–11254, Abu Dhabi, United
Arab Emirates, Dec. 2022. Association for Computational
Linguistics.

[33] Yuanze Lin, Yujia Xie, Dongdong Chen, Yichong Xu, Chen-
guang Zhu, and Lu Yuan. REVIVE: Regional visual rep-
resentation matters in knowledge-based visual question an-
swering. In Alice H. Oh, Alekh Agarwal, Danielle Belgrave,

and Kyunghyun Cho, editors, Advances in Neural Informa-
tion Processing Systems, 2022.

[34] Aman Madaan, Shuyan Zhou, Uri Alon, Yiming Yang, and
Graham Neubig. Language models of code are few-shot
commonsense learners. arXiv preprint arXiv:2210.07128,
2022.

[35] Chengzhi Mao, Revant Teotia, Amrutha Sundar, Sachit
Menon, Junfeng Yang, Xin Wang, and Carl Vondrick. Dou-
bly Right Object Recognition: A Why Prompt for Visual Ra-
tionales, Dec. 2022. arXiv:2212.06202 [cs].

[36] Kenneth Marino, Mohammad Rastegari, Ali Farhadi, and
Roozbeh Mottaghi. OK-VQA: A Visual Question Answer-
ing Benchmark Requiring External Knowledge. May 2019.

[37] Sachit Menon and Carl Vondrick. Visual Classification
via Description from Large Language Models, Dec. 2022.
arXiv:2210.07183 [cs].

[38] Matthias Minderer, Alexey Gritsenko, Austin Stone, Maxim
Neumann, Dirk Weissenborn, Alexey Dosovitskiy, Aravindh
Mahendran, Anurag Arnab, Mostafa Dehghani, Zhuoran
Shen, Xiao Wang, Xiaohua Zhai, Thomas Kipf, and Neil
Houlsby. Simple open-vocabulary object detection with vi-
sion transformers. arXiv preprint arXiv:2205.06230, 2022.

[39] Binh X Nguyen, Tuong Do, Huy Tran, Erman Tjiputra,
Quang D Tran, and Anh Nguyen. Coarse-to-fine reason-
ing for visual question answering. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 4558–4566, 2022.

[40] Aaron Parisi, Yao Zhao, and Noah Fiedel. Talm: Tool aug-
mented language models. arXiv preprint arXiv:2205.12255,
2022.

[41] Dong Huk Park, Lisa Anne Hendricks, Zeynep Akata,
Anna Rohrbach, Bernt Schiele, Trevor Darrell, and Marcus
Rohrbach. Multimodal Explanations: Justifying Decisions
and Pointing to the Evidence. In 2018 IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pages 8779–
8788, Salt Lake City, UT, June 2018. IEEE.

[42] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer,
James Bradbury, Gregory Chanan, Trevor Killeen, Zeming
Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison,
Andreas Kopf, Edward Yang, Zachary DeVito, Martin Rai-
son, Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner,
Lu Fang, Junjie Bai, and Soumith Chintala. Pytorch: An
imperative style, high-performance deep learning library.
In Advances in Neural Information Processing Systems 32,
pages 8024–8035. Curran Associates, Inc., 2019.

[43] Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya
Ramesh, Gabriel Goh, Sandhini Agarwal, Girish Sastry,
Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learn-
ing transferable visual models from natural language super-
vision. In International conference on machine learning,
pages 8748–8763. PMLR, 2021.

[44] René Ranftl, Katrin Lasinger, David Hafner, Konrad
Schindler, and Vladlen Koltun. Towards robust monocular
depth estimation: Mixing datasets for zero-shot cross-dataset
transfer. IEEE Transactions on Pattern Analysis and Ma-
chine Intelligence, 44(3), 2022.

[45] Revant Gangi Reddy, Xilin Rui, Manling Li, Xudong Lin,
Haoyang Wen, Jaemin Cho, Lifu Huang, Mohit Bansal,

Avirup Sil, Shih-Fu Chang, et al. Mumuqa: Multimedia
multi-hop news question answering via cross-media knowl-
edge extraction and grounding. In Proceedings of the
AAAI Conference on Artificial Intelligence, volume 36, pages
11200–11208, 2022.

[46] Timo Schick, Jane Dwivedi-Yu, Roberto Dessì, Roberta
Raileanu, Maria Lomeli, Luke Zettlemoyer, Nicola Can-
cedda, and Thomas Scialom. Toolformer: Language mod-
els can teach themselves to use tools. arXiv preprint
arXiv:2302.04761, 2023.

[47] Ramprasaath R. Selvaraju, Michael Cogswell, Abhishek
Das, Ramakrishna Vedantam, Devi Parikh, and Dhruv Ba-
tra. Grad-CAM: Visual Explanations from Deep Net-
works via Gradient-based Localization. International Jour-
nal of Computer Vision, 128(2):336–359, Feb. 2020. arXiv:
1610.02391.

[48] Sanjay Subramanian, Ben Bogin, Nitish Gupta, Tomer Wolf-
son, Sameer Singh, Jonathan Berant, and Matt Gardner. Ob-
taining Faithful Interpretations from Compositional Neural
Networks, Sept. 2020. arXiv:2005.00724 [cs].

[49] Sanjay Subramanian, Will Merrill, Trevor Darrell, Matt
Gardner, Sameer Singh, and Anna Rohrbach. Reclip: A
strong zero-shot baseline for referring expression compre-
hension. In Proceedings of the 60th Annual Meeting of the
Association for Computational Linguistics, Dublin, Ireland,
May 2022. Association for Computational Linguistics.

[50] Dídac Surís, Dave Epstein, Heng Ji, Shih-Fu Chang, and
Carl. Vondrick. Learning to learn words from visual scenes.
European Conference on Computer Vision (ECCV), 2020.

[51] Hao Tan and Mohit Bansal. Lxmert: Learning cross-
modality encoder representations from transformers. arXiv
preprint arXiv:1908.07490, 2019.

[52] Anthony Meng Huat Tiong, Junnan Li, Boyang Li, Silvio
Savarese, and Steven C.H. Hoi. Plug-and-play VQA: Zero-
shot VQA by conjoining large pretrained models with zero
training. In Findings of the Association for Computational
Linguistics: EMNLP 2022, pages 951–967, Abu Dhabi,
United Arab Emirates, Dec. 2022. Association for Computa-
tional Linguistics.

[53] Peng Wang, An Yang, Rui Men, Junyang Lin, Shuai Bai,
Zhikang Li, Jianxin Ma, Chang Zhou, Jingren Zhou, and
Hongxia Yang. Ofa: Unifying architectures, tasks, and
modalities through a simple sequence-to-sequence learning
framework. CoRR, abs/2202.03052, 2022.

[54] Xingyao Wang, Sha Li, and Heng Ji. Code4struct: Code gen-
eration for few-shot structured prediction from natural lan-
guage. arXiv preprint arXiv:2210.12810, 2022.

[55] Zhenhailong Wang, Manling Li, Ruochen Xu, Luowei Zhou,
Jie Lei, Xudong Lin, Shuohang Wang, Ziyi Yang, Chen-
guang Zhu, Derek Hoiem, et al. Language models with im-
age descriptors are strong few-shot video-language learners.
2022.

[56] Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten
Bosma, Brian Ichter, Fei Xia, Ed Chi, Quoc Le, and Denny
Zhou. Chain of Thought Prompting Elicits Reasoning in
Large Language Models, Oct. 2022. arXiv:2201.11903 [cs].

[57] Spencer Whitehead, Hui Wu, Heng Ji, Rogerio Feris, and
Kate Saenko. Separating skills and concepts for novel vi-

sual question answering. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition
(CVPR), pages 5632–5641, June 2021.

[58] Junbin Xiao, Pan Zhou, Tat-Seng Chua, and Shuicheng Yan.
Video graph transformer for video question answering. In
European Conference on Computer Vision, pages 39–58.
Springer, 2022.

[59] Kelvin Xu, Jimmy Ba, Ryan Kiros, Kyunghyun Cho,
Aaron Courville, Ruslan Salakhutdinov, Richard Zemel,
and Yoshua Bengio. Show, Attend and Tell: Neural Im-
age Caption Generation with Visual Attention, Apr. 2016.
arXiv:1502.03044 [cs].

[60] Zhengyuan Yang, Zhe Gan, Jianfeng Wang, Xiaowei Hu, Yu-
mao Lu, Zicheng Liu, and Lijuan Wang. An empirical study
of gpt-3 for few-shot knowledge-based vqa. In Proceedings
of the AAAI Conference on Artificial Intelligence, volume 36,
pages 3081–3089, 2022.

[61] Qinghao Ye, Guohai Xu, Ming Yan, Haiyang Xu, Qi
Qian, Ji Zhang, and Fei Huang. Hitea: Hierarchical
temporal-aware video-language pre-training. arXiv preprint
arXiv:2212.14546, 2022.

[62] Kexin Yi, Jiajun Wu, Chuang Gan, A. Torralba, Pushmeet
Kohli, and J. Tenenbaum. Neural-Symbolic VQA: Disentan-
gling Reasoning from Vision and Language Understanding.
ArXiv, 2018.

[63] Andy Zeng, Maria Attarian, Brian Ichter, Krzysztof Choro-
manski, Adrian Wong, Stefan Welker, Federico Tombari,
Aveek Purohit, Michael Ryoo, Vikas Sindhwani, Johnny
Lee, Vincent Vanhoucke, and Pete Florence. Socratic mod-
els: Composing zero-shot multimodal reasoning with lan-
guage. arXiv, 2022.

[64] Yan Zeng, Xinsong Zhang, and Hang Li. Multi-grained vi-
sion language pre-training: Aligning texts with visual con-
cepts. arXiv preprint arXiv:2111.08276, 2021.

[65] Yundong Zhang, Juan Carlos Niebles, and Alvaro Soto. In-
terpretable Visual Question Answering by Visual Ground-
ing from Attention Supervision Mining, Aug. 2018.
arXiv:1808.00265 [cs].

A. Pretrained Models
We specify details about all the pretrained models used, as well as the code-generation large language model:

• GLIP [31]. We use the implementation from the official GitHub repository3. In our experiments we use the GLIP-L
(large) version. In order to adapt to new versions of PyTorch, we had to modify the CUDA implementation of some
functions, as the repository relies on old versions of PyTorch. We provide our updated version of GLIP in our code.

• MiDaS [44]. We use the implementation from PyTorch hub4, and use the “DPT_Large” version.

• BLIP-2 [30]. We tried both the implementation from the official repository5 and the Huggingface one6, with little
difference between the two, being the former slightly more performant and the latter faster. In both cases, we used the
Flan-T5 XXL version.

• X-VLM [64]. We used the official implementation7, specifically the version finetuned for retrieval on MSCOCO.

• GPT-3 for llm_query. The GPT-3 model we use for the LLM query function is the text-davinci-003 one. We use the
official OpenAI Python API8.

• Codex. The GPT-3 model we use for code generation is the code-davinci-002 one.

See the code for more detailed implementation details.

B. API
We provide the full API next, in Listing 1:

1 class ImagePatch:
2 """A Python class containing a crop of an image centered around a particular object, as well as relevant information.
3 Attributes
4 ----------
5 cropped_image : array_like
6 An array-like of the cropped image taken from the original image.
7 left : int
8 An int describing the position of the left border of the crop’s bounding box in the original image.
9 lower : int

10 An int describing the position of the bottom border of the crop’s bounding box in the original image.
11 right : int
12 An int describing the position of the right border of the crop’s bounding box in the original image.
13 upper : int
14 An int describing the position of the top border of the crop’s bounding box in the original image.
15

16 Methods
17 -------
18 find(object_name: str)->List[ImagePatch]
19 Returns a list of new ImagePatch objects containing crops of the image centered around any objects found in the
20 image matching the object_name.
21 exists(object_name: str)->bool
22 Returns True if the object specified by object_name is found in the image, and False otherwise.
23 verify_property(property: str)->bool
24 Returns True if the property is met, and False otherwise.
25 best_text_match(option_list: List[str], prefix: str)->str
26 Returns the string that best matches the image.
27 simple_query(question: str=None)->str
28 Returns the answer to a basic question asked about the image. If no question is provided, returns the answer
29 to "What is this?".
30 compute_depth()->float
31 Returns the median depth of the image crop.
32 crop(left: int, lower: int, right: int, upper: int)->ImagePatch
33 Returns a new ImagePatch object containing a crop of the image at the given coordinates.
34 """
35

36 def __init__(self, image, left: int=None, lower: int=None, right: int=None, upper: int=None):
37 """Initializes an ImagePatch object by cropping the image at the given coordinates and stores the coordinates as attributes.

3https://github.com/microsoft/GLIP
4https://pytorch.org/hub/intelisl_midas_v2/
5https://github.com/salesforce/LAVIS/tree/main/projects/blip2
6https://huggingface.co/Salesforce/blip2-flan-t5-xxl
7https://github.com/zengyan-97/X-VLM
8https://openai.com/blog/openai-api

38 If no coordinates are provided, the image is left unmodified, and the coordinates are set to the dimensions of the image.
39 Parameters
40 -------
41 image : array_like
42 An array-like of the original image.
43 left : int
44 An int describing the position of the left border of the crop’s bounding box in the original image.
45 lower : int
46 An int describing the position of the bottom border of the crop’s bounding box in the original image.
47 right : int
48 An int describing the position of the right border of the crop’s bounding box in the original image.
49 upper : int
50 An int describing the position of the top border of the crop’s bounding box in the original image.
51

52 """
53 if left is None and right is None and upper is None and lower is None:
54 self.cropped_image = image
55 self.left = 0
56 self.lower = 0
57 self.right = image.shape[2] # width
58 self.upper = image.shape[1] # height
59 else:
60 self.cropped_image = image[:, lower:upper, left:right]
61 self.left = left
62 self.upper = upper
63 self.right = right
64 self.lower = lower
65

66 self.width = self.cropped_image.shape[2]
67 self.height = self.cropped_image.shape[1]
68

69 self.horizontal_center = (self.left + self.right) / 2
70 self.vertical_center = (self.lower + self.upper) / 2
71

72 def find(self, object_name: str) -> List[ImagePatch]:
73 """Returns a list of ImagePatch objects matching object_name contained in the crop if any are found.
74 Otherwise, returns an empty list.
75 Parameters
76 ----------
77 object_name : str
78 the name of the object to be found
79

80 Returns
81 -------
82 List[ImagePatch]
83 a list of ImagePatch objects matching object_name contained in the crop
84

85 Examples
86 --------
87 >>> # return the children
88 >>> def execute_command(image) -> List[ImagePatch]:
89 >>> image_patch = ImagePatch(image)
90 >>> children = image_patch.find("child")
91 >>> return children
92 """
93

94 def exists(self, object_name: str) -> bool:
95 """Returns True if the object specified by object_name is found in the image, and False otherwise.
96 Parameters
97 -------
98 object_name : str
99 A string describing the name of the object to be found in the image.

100

101 Examples
102 -------
103 >>> # Are there both cakes and gummy bears in the photo?
104 >>> def execute_command(image)->str:
105 >>> image_patch = ImagePatch(image)
106 >>> is_cake = image_patch.exists("cake")
107 >>> is_gummy_bear = image_patch.exists("gummy bear")
108 >>> return bool_to_yesno(is_cake and is_gummy_bear)
109 """
110 return len(self.find(object_name)) > 0
111

112 def verify_property(self, object_name: str, property: str) -> bool:
113 """Returns True if the object possesses the property, and False otherwise.
114 Differs from ’exists’ in that it presupposes the existence of the object specified by object_name, instead checking whether the object

possesses the property.
115 Parameters

116 -------
117 object_name : str
118 A string describing the name of the object to be found in the image.
119 property : str
120 A string describing the property to be checked.
121

122 Examples
123 -------
124 >>> # Do the letters have blue color?
125 >>> def execute_command(image) -> str:
126 >>> image_patch = ImagePatch(image)
127 >>> letters_patches = image_patch.find("letters")
128 >>> # Question assumes only one letter patch
129 >>> if len(letters_patches) == 0:
130 >>> # If no letters are found, query the image directly
131 >>> return image_patch.simple_query("Do the letters have blue color?")
132 >>> return bool_to_yesno(letters_patches[0].verify_property("letters", "blue"))
133 """
134 return verify_property(self.cropped_image, object_name, property)
135

136 def best_text_match(self, option_list: List[str]) -> str:
137 """Returns the string that best matches the image.
138 Parameters
139 -------
140 option_list : str
141 A list with the names of the different options
142 prefix : str
143 A string with the prefixes to append to the options
144

145 Examples
146 -------
147 >>> # Is the cap gold or white?
148 >>> def execute_command(image)->str:
149 >>> image_patch = ImagePatch(image)
150 >>> cap_patches = image_patch.find("cap")
151 >>> # Question assumes one cap patch
152 >>> if len(cap_patches) == 0:
153 >>> # If no cap is found, query the image directly
154 >>> return image_patch.simple_query("Is the cap gold or white?")
155 >>> return cap_patches[0].best_text_match(["gold", "white"])
156 """
157 return best_text_match(self.cropped_image, option_list)
158

159 def simple_query(self, question: str = None) -> str:
160 """Returns the answer to a basic question asked about the image. If no question is provided, returns the answer to "What is this?".
161 Parameters
162 -------
163 question : str
164 A string describing the question to be asked.
165

166 Examples
167 -------
168

169 >>> # Which kind of animal is not eating?
170 >>> def execute_command(image) -> str:
171 >>> image_patch = ImagePatch(image)
172 >>> animal_patches = image_patch.find("animal")
173 >>> for animal_patch in animal_patches:
174 >>> if not animal_patch.verify_property("animal", "eating"):
175 >>> return animal_patch.simple_query("What kind of animal is eating?") # crop would include eating so keep it in the query
176 >>> # If no animal is not eating, query the image directly
177 >>> return image_patch.simple_query("Which kind of animal is not eating?")
178

179 >>> # What is in front of the horse?
180 >>> # contains a relation (around, next to, on, near, on top of, in front of, behind, etc), so ask directly
181 >>> return image_patch.simple_query("What is in front of the horse?")
182 >>>
183 """
184 return simple_qa(self.cropped_image, question)
185

186 def compute_depth(self):
187 """Returns the median depth of the image crop
188 Parameters
189 ----------
190 Returns
191 -------
192 float
193 the median depth of the image crop
194

195 Examples
196 --------
197 >>> # the person furthest away
198 >>> def execute_command(image)->ImagePatch:
199 >>> image_patch = ImagePatch(image)
200 >>> person_patches = image_patch.find("person")
201 >>> person_patches.sort(key=lambda person: person.compute_depth())
202 >>> return person_patches[-1]
203 """
204 depth_map = compute_depth(self.cropped_image)
205 return depth_map.median()
206

207 def crop(self, left: int, lower: int, right: int, upper: int) -> ImagePatch:
208 """Returns a new ImagePatch cropped from the current ImagePatch.
209 Parameters
210 -------
211 left : int
212 The leftmost pixel of the cropped image.
213 lower : int
214 The lowest pixel of the cropped image.
215 right : int
216 The rightmost pixel of the cropped image.
217 upper : int
218 The uppermost pixel of the cropped image.
219 -------
220 """
221 return ImagePatch(self.cropped_image, left, lower, right, upper)
222

223 def overlaps_with(self, left, lower, right, upper):
224 """Returns True if a crop with the given coordinates overlaps with this one,
225 else False.
226 Parameters
227 ----------
228 left : int
229 the left border of the crop to be checked
230 lower : int
231 the lower border of the crop to be checked
232 right : int
233 the right border of the crop to be checked
234 upper : int
235 the upper border of the crop to be checked
236

237 Returns
238 -------
239 bool
240 True if a crop with the given coordinates overlaps with this one, else False
241

242 Examples
243 --------
244 >>> # black cup on top of the table
245 >>> def execute_command(image) -> ImagePatch:
246 >>> image_patch = ImagePatch(image)
247 >>> table_patches = image_patch.find("table")
248 >>> if len(table_patches) == 0:
249 >>> table_patches = [image_patch] # If no table found, assume the whole image is a table
250 >>> table_patch = table_patches[0]
251 >>> cup_patches = image_patch.find("black cup")
252 >>> for cup in cup_patches:
253 >>> if cup.vertical_center > table_patch.vertical_center
254 >>> return cup
255 >>> return cup_patches[0] # If no cup found on top of the table, return the first cup found
256 """
257 return self.left <= right and self.right >= left and self.lower <= upper and self.upper >= lower
258

259

260 def best_image_match(list_patches: List[ImagePatch], content: List[str], return_index=False) -> Union[ImagePatch, int]:
261 """Returns the patch most likely to contain the content.
262 Parameters
263 ----------
264 list_patches : List[ImagePatch]
265 content : List[str]
266 the object of interest
267 return_index : bool
268 if True, returns the index of the patch most likely to contain the object
269

270 Returns
271 -------
272 int
273 Patch most likely to contain the object

274

275 Examples
276 --------
277 >>> # Return the man with the hat
278 >>> def execute_command(image):
279 >>> image_patch = ImagePatch(image)
280 >>> man_patches = image_patch.find("man")
281 >>> if len(man_patches) == 0:
282 >>> return image_patch
283 >>> hat_man = best_image_match(list_patches=man_patches, content=["hat"])
284 >>> return hat_man
285

286 >>> # Return the woman with the pink scarf and blue pants
287 >>> def execute_command(image):
288 >>> image_patch = ImagePatch(image)
289 >>> woman_patches = image_patch.find("woman")
290 >>> if len(woman_patches) == 0:
291 >>> return image_patch
292 >>> woman_most = best_image_match(list_patches=woman_patches, content=["pink scarf", "blue pants"])
293 >>> return woman_most
294 """
295 return best_image_match(list_patches, content, return_index)
296

297

298 def distance(patch_a: ImagePatch, patch_b: ImagePatch) -> float:
299 """
300 Returns the distance between the edges of two ImagePatches. If the patches overlap, it returns a negative distance
301 corresponding to the negative intersection over union.
302 """
303 return distance(patch_a, patch_b)
304

305

306 def bool_to_yesno(bool_answer: bool) -> str:
307 return "yes" if bool_answer else "no"
308

309

310 def llm_query(question: str) -> str:
311 ’’’Answers a text question using GPT-3. The input question is always a formatted string with a variable in it.
312

313 Parameters
314 ----------
315 question: str
316 the text question to ask. Must not contain any reference to ’the image’ or ’the photo’, etc.
317 ’’’
318 return llm_query(question)
319

320

321 class VideoSegment:
322 """A Python class containing a set of frames represented as ImagePatch objects, as well as relevant information.
323 Attributes
324 ----------
325 video : torch.Tensor
326 A tensor of the original video.
327 start : int
328 An int describing the starting frame in this video segment with respect to the original video.
329 end : int
330 An int describing the ending frame in this video segment with respect to the original video.
331 num_frames->int
332 An int containing the number of frames in the video segment.
333

334 Methods
335 -------
336 frame_iterator->Iterator[ImagePatch]
337 trim(start, end)->VideoSegment
338 Returns a new VideoSegment containing a trimmed version of the original video at the [start, end] segment.
339 select_answer(info, question, options)->str
340 Returns the answer to the question given the options and additional information.
341 """
342

343 def __init__(self, video: torch.Tensor, start: int = None, end: int = None, parent_start=0, queues=None):
344 """Initializes a VideoSegment object by trimming the video at the given [start, end] times and stores the
345 start and end times as attributes. If no times are provided, the video is left unmodified, and the times are
346 set to the beginning and end of the video.
347

348 Parameters
349 -------
350 video : torch.Tensor
351 A tensor of the original video.
352 start : int

353 An int describing the starting frame in this video segment with respect to the original video.
354 end : int
355 An int describing the ending frame in this video segment with respect to the original video.
356 """
357

358 if start is None and end is None:
359 self.trimmed_video = video
360 self.start = 0
361 self.end = video.shape[0] # duration
362 else:
363 self.trimmed_video = video[start:end]
364 if start is None:
365 start = 0
366 if end is None:
367 end = video.shape[0]
368 self.start = start + parent_start
369 self.end = end + parent_start
370

371 self.num_frames = self.trimmed_video.shape[0]
372

373 def frame_iterator(self) -> Iterator[ImagePatch]:
374 """Returns an iterator over the frames in the video segment."""
375 for i in range(self.num_frames):
376 yield ImagePatch(self.trimmed_video[i], self.start + i)
377

378 def trim(self, start: Union[int, None] = None, end: Union[int, None] = None) -> VideoSegment:
379 """Returns a new VideoSegment containing a trimmed version of the original video at the [start, end]
380 segment.
381

382 Parameters
383 ----------
384 start : Union[int, None]
385 An int describing the starting frame in this video segment with respect to the original video.
386 end : Union[int, None]
387 An int describing the ending frame in this video segment with respect to the original video.
388

389 Examples
390 --------
391 >>> # Return the second half of the video
392 >>> def execute_command(video):
393 >>> video_segment = VideoSegment(video)
394 >>> video_second_half = video_segment.trim(video_segment.num_frames // 2, video_segment.num_frames)
395 >>> return video_second_half
396 """
397 if start is not None:
398 start = max(start, 0)
399 if end is not None:
400 end = min(end, self.num_frames)
401

402 return VideoSegment(self.trimmed_video, start, end, self.start)
403

404 def select_answer(self, info: dict, question: str, options: List[str]) -> str:
405 return select_answer(self.trimmed_video, info, question, options)
406

407 def __repr__(self):
408 return "VideoSegment({}, {})".format(self.start, self.end)

Listing 1. Full API.

Not all methods are used in all the benchmarks. Next we describe in more detail what content is used for the API
specifications for every benchmark.

• RefCOCO and RefCOCO+. We use all the methods from the ImagePatch class except for best_text_match and
simple_query. We also use the best_text_match and distance functions. Additionally we add ImagePatch usage
examples in the API definition that are representative of the RefCOCO dataset, and look like the following:

1 # chair at the front
2 def execute_command(image) -> ImagePatch:
3 # Return the chair
4 image_patch = ImagePatch(image)
5 chair_patches = image_patch.find("chair")
6 chair_patches.sort(key=lambda chair: chair.compute_depth())
7 chair_patch = chair_patches[0]
8 # Remember: return the chair
9 return chair_patch

Listing 2. RefCOCO example.

• GQA. The GQA API contains all the contents in the API from Listing 1 up until the llm_query function, which is not
used. The ImagePatch usage examples look like the following:

1 # Is there a backpack to the right of the man?
2 def execute_command(image)->str:
3 image_patch = ImagePatch(image)
4 man_patches = image_patch.find("man")
5 # Question assumes one man patch
6 if len(man_patches) == 0:
7 # If no man is found, query the image directly
8 return image_patch.simple_query("Is there a backpack to the right of the man?")
9 man_patch = man_patches[0]

10 backpack_patches = image_patch.find("backpack")
11 # Question assumes one backpack patch
12 if len(backpack_patches) == 0:
13 return "no"
14 for backpack_patch in backpack_patches:
15 if backpack_patch.horizontal_center > man_patch.horizontal_center:
16 return "yes"
17 return "no"

Listing 3. GQA example.

• OK-VQA. The API only uses the simple_query method from ImagePatch. It additionally uses the llm_query function.
The ImagePatch usage examples look like the following:

1

2 # Who is famous for allegedly doing this in a lightning storm?
3 def execute_command(image)->str:
4 # The question is not direct perception, so we need to ask the image for more information
5 # Salient information: what is being done?
6 image = ImagePatch(image)
7 guesses = []
8 action = image.simple_query("What is being done?")
9 external_knowledge_query = "Who is famous for allegedly {} in a lightning storm?".format(action)

10 step_by_step_guess = llm_query(external_knowledge_query)
11 guesses.append("what is being done is {}".format(action) + ", so " + step_by_step_guess)
12 direct_guess = image.simple_query("Who is famous for allegedly doing this in a lightning storm?")
13 guesses.append(direct_guess)
14 return process_guesses("Who is famous for allegedly doing this in a lightning storm?", guesses)

Listing 4. OK-VQA example.

• NeXT-QA. The VideoSegment class is added to the API definition, and the available ImagePatch methods are find,
exists, best_text_match and simple_query. The function best_image_match is also used. The ImagePatch usage
examples look like:

1 # why does the man with a red hat put his arm down at the end of the video
2 # possible answers: [’watching television’, ’searching for food’, ’move its head’, ’looking over cardboard box’, ’looks at the camera’]
3 def execute_command(video, possible_answers, question)->[str, dict]:
4 # Reason every step
5 video_segment = VideoSegment(video)
6 # Caption last frame of the video (end of video)
7 last_frame = ImagePatch(video_segment, -1)
8 last_caption = last_frame.simple_query("What is this?")
9 men = last_frame.find("man")

10 if len(men) == 0:
11 men = [last_frame]
12 man = men[0]
13 man_action = man.simple_query("What is the man doing?")
14 # Answer the question. Remember to create the info dictionary
15 info = {
16 "Caption of last frame": last_caption,
17 "Man looks like he is doing": man_action
18 }
19 answer = video_segment.select_answer(info, question, possible_answers)
20 return answer, info

Listing 5. NeXT-QA example.

• Beyond benchmarks. For the examples in Figure 1 we use the same API as the one used for the benchmarks, and the
usage examples are taken from the benchmark APIs, combining them to have more generality. We do not add any other
example, ViperGPT generalizes to the complex cases shown in Figure 1 just based on the provided API.

Note that in some of the examples we added comments, as well as error handling. The generated code also contains similar
lines. We removed those for clarity in the figures shown in the main paper.

